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Abstract
We establish some of the properties of the states interpolating between number
and coherent states denoted by |n〉λ; among them are the reproduction of these
states by the action of an operator-valued function on |n〉 (the standard Fock
space) and the fact that they can be regarded as f -deformed coherent bound
states. In this paper we use them as the basis of our new Fock space which in
this case is not orthogonal but normalized. Then by some special superposition
of them we obtain new representations for coherent and squeezed states in the
new basis. Finally the statistical properties of these states are studied in detail.

PACS number: 42.50.Dv

1. Introduction

As is well known the Hilbert space is a natural framework for the mathematical description of
many areas of physics: certainly for quantum mechanics (and quantum field theory), signal
and image analysis [Lynn(1986)], etc. In all these cases any arbitrary vector can be represented
in terms of the elements of some basis {|n〉, n ∈ N}∞n=0. An orthonormal basis is the one that
is mostly advocated by mathematicians. But unfortunately, orthonormal bases are sometimes
difficult to find and hard to work with. So the generalization to non-orthogonal basis vectors
(such as that we will introduce in this paper denoted by {|n〉λ, n ∈ N}∞n=0) has been proposed.
These vectors have properties such as fast convergence, uniqueness of decomposition, etc.
The resulting object is called a ‘frame’ [Ali(1993)]; or more precisely a ‘discrete frame’. The
non-orthogonal states are also used as a tool in ‘generalized measurement’ that is a very
important subject in view of the foundations of quantum mechanics, quantum nondemolition
measurement and quantum information theory [Peres(1995)]. This paper, which contains
the construction of coherent states (CSs) and squeezed state (SSs) using a special set
of non-orthogonal but normalizable bases {|n〉λ, n ∈ N}∞n=0 instead of orthonormal ones
{|n〉, n ∈ N}∞n=0, can be classified in the discrete frame background. Thus in our opinion this
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approach provides a more fundamental and certainly more flexible rule than that of the usual
one considered extensively in the physical literature for construction of new generalized CSs,
a concept which has attained the most applications in quantum optics, as well as other fields
of physics [Klauder(1985), Perelomov(1986)].

For a simple harmonic oscillator (SHO) in natural units and with unit frequency we have

H = a†a + 1
2 [a, a†] = 1 (a†)† = a (1)

where a, a† and H are standard annihilation, creation and Hamiltonian operators, respectively.
Following the particular kind of deformation proposed by Beckers et al [Beckers(1998)] we
consider the parametric harmonic oscillator by deforming the creation operator in such a way
that

a
†
λ = a† + λI λ ∈ R (2)

without changing the annihilation operator. So the λ-Hamiltonian becomes

Hλ = a
†
λa + 1

2 . (3)

Note that
(
a
†
λ

)† �= aλ,H
†
λ �= Hλ, but as for SHO yet we have[

a, a
†
λ

] = 1
[
Hλ, a

†
λ

] = a
†
λ. (4)

To manifest our motivation for considering the special kind of deformation in equation (2)
we offer the following discussion. In a previous paper we have shown that a large class of
generalized CSs can be obtained by changing the basis in the underlying Hilbert space. We
have presented a systematic formalism that the particular deformation which we employed in
this paper is a special case of the general scheme which has been introduced in [Ali(2004)].
To clarify further, we will explain briefly the setting. Let H be a Hilbert space and T , T −1

be operators densely defined and closed on D(T ) and D(T −1), respectively, and F = T †T .
Two new Hilbert spaces HF ,HF−1 are the completions of the sets D(T ) and D(T †−1

) with the
scalar products

〈f |g〉F = 〈f |Fg〉H 〈f |g〉F−1 = 〈f |F−1g〉H (5)

respectively. Considering the generators of the Weyl–Heisenberg algebra as bases on H, we
may obtain the transformed generators on HF such as

aF = T −1aT a
†
F = T −1a†T NF = T −1NT. (6)

A similar argument may be followed for the Hilbert space HF−1 , whose properties were
discussed in [Ali(2004)]. It is obvious that the oscillator algebra remains unchanged. Now
choosing T = exp(−λa) and using (6) for the annihilation and creation operators on HF we
recover the exact forms of the deformation introduced by Fu et al [Fu(2000)] and Beckers
et al [Beckers(1998)] which are employed in this paper, i.e.

aF = a a
†
F = a† + λI. (7)

Other selections for the T-operator lead to other families of generalized CSs. In this manner
we have established the basic foundation of the particular kind of deformation we have used
in this work, in the general theory of constructing the CSs in an non-orthogonal basis. The
case in which the annihilation operator is deformed as aλ = a + λI , has also been already
considered and discussed by Ali and us in [Ali(2004)].

The eigenvalue equation

Hλ|n〉λ = En,λ|n〉λ (8)

has been solved in [Beckers(1998)], and led to the λ-states

ψn,λ(x) = 2nn!π−1/4 e−x2/2L(0)
n (−λ2)Hn(x + λ/

√
2) (9)



Representations of coherent and squeezed states in a f -deformed Fock space 5651

where L(0)
n and Hn are, respectively, the well-known Laguerre and Hermite polynomials of

order n and Hλ is isospectral with HSHO, i.e.

En,λ = En = n + 1
2 n = 0, 1, 2, . . . . (10)

Also the operation of a and a
†
λ on λ-states is as follows:

a|n〉λ = √
n

(
L

(0)
n−1(−λ2)

L
(0)
n (−λ2)

)1/2

|n − 1〉λ (11)

a
†
λ|n〉λ =

√
n + 1

(
L

(0)
n+1(−λ2)

L
(0)
n (−λ2)

)1/2

|n + 1〉λ. (12)

The states introduced in equation (9) are not orthogonal and their inner products read

λ〈m|n〉λ = [
L(0)

m (−λ2)L(0)
n (−λ2)

]−1/2 ∑
k

λ2k+m−n(n!m!)1/2

k!(n − k)!(m − n + k)!
(13)

but it is trivial from equation (13) that they are normalized, i.e. λ〈n|n〉λ = 1.

2. Some remarkable points

Before we start our main discussion, let us list some of the interesting and important points
we may conclude. The following results may be considered as complementary in regard to
the previous related works mentioned earlier [Fu(2000), Beckers(1998)].

(a) It can easily be shown that the states |n〉λ can be regarded as the basis for our new
Fock space, since the necessary and sufficient conditions mentioned for a one-dimensional
quantum mechanical Fock space in [Bardek(2000)] will be satisfied. In our problem these
conditions are briefly (i) the existence of a vacuum state such that a|0〉 = 0, (ii) 〈0|aa

†
λ|0〉 > 0,

(iii)
[
aa

†
λ, a

†
λa

] �= 0 and aa
†
λ �= a

†
λa.

(b) Despite the appearance of equation (13), λ〈m|n〉λ =λ 〈n|m〉λ holds in the Hilbert space
whose basis is spanned by states |n〉λ.

(c) a
†
λa|n〉λ ≡ n̂λ|n〉λ = n|n〉λ; so n̂λ can be thought of as a number operator in the new

Fock space. Moreover from this equation we see that (n̂ + λa)|n〉λ = n|n〉λ which indicates
simply the ladder operator formalism [Wang(2000)] of the state |n〉λ.

(d) By equations (11) and (12) we obtain, respectively,

an|n〉λ =
(

n!

L
(0)
n (−λ2)

)1/2

|0〉λ (14)

and

|n〉λ =
(
a
†
λ

)n(
n!L(0)

n (−λ2)
)1/2 |0〉λ. (15)

Since |0〉λ = |0〉SHO, using equations (2) and (3) and the binomial formula we obtain easily
the relation between the standard and λ-Fock space as

|n〉λ =
n∑

m=0

(n!)1/2λn−m

(n − m)!
(
m!L(0)

n (−λ2)
)1/2 |m〉 (16)

which suggests that every state |n〉λ in this non-orthogonal Hilbert space can be regarded as a
special finite superposition of |0〉, |1〉, . . . , |n〉 in the standard Fock space |n〉SHO (eliminated
indices SHO).
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(e) As another point, we see that according to the result of our calculation in equation (16),
the states |n〉λ are indeed the intermediate number-coherent states denoted by ‖η, n〉 which
have already been derived by Fu et al in [Fu(2000)]

|n〉λ ≡ ‖η, n〉 = D(−λ)|λ, n〉 (17)

where λ = √
(1 − η)/η and η is a real probability restricted to 0 < η � 1,D(−λ) is the

ordinary displacement operator defined later in equation (34) and

|λ, n〉 = 1√
n!L(0)

n (−λ2)

a†n |λ〉 (18)

is the photon-added coherent state or excited coherent state and |λ〉 = D(λ)|0〉 is a coherent
state. In this respect Fu et al suggested that the states ‖η, n〉 (and also |n〉λ) are displaced
excited coherent states. We are grateful for a scheme suggested in [Fu(2000)] that during
an experiment one can generate these states. They have shown that the λ-parameter depends
physically on an external driving field (A) in a cavity and the cavity resonant frequency (ω)
through the relation λ = A/ω.

(f ) Using equations (17) and (18) and the BCH lemma, the rhs of equation (16) can be
replaced by the compact and interesting formula

|n〉λ = eλa√
L

(0)
n (−λ2)

|n〉 ≡ Tn,λ|n〉 (19)

where Tn,λ is an operator-valued function which exponentially depends on λ and the

annihilation operator. The coefficient
[
L(0)

n (−λ2)
]−1/2

is a c-number which keeps the
normalizability of the deformed Fock space, and the order of the Laguerre polynomial matches
with the old number state which we wish to transform.

(g) Recently Shanta et al [Shanta(1994)] and in a systematic manner Man’ko et al
[Manko(1996)] introduced nonlinear coherent states as eigenfunctions of a deformed
annihilation operator A = af (n), such that

A|α, f 〉 = α|α, f 〉 (20)

in which the representation of these states in |n〉 basis is given by

|α, f 〉 = Nf (|α|2)
∞∑

n=0

αn

√
nf (n)!

|n〉 (21)

where f (n) is the nonlinearity function, f (n)!
.= f (0)f (1) . . . f (n) (by convention f (0) = 1)

and Nf is an appropriate normalization factor. More recently Re’camier and Jauregui in
[Re’camier(2003)] proposed a definition for f -coherent bound states as

|α, f 〉B = N (m)
f,α

m∑
n=0

αn

√
nf (n)!

|n〉 (22)

where N (m)
f,α is a normalization factor. Following these considerations it is possible to rewrite

the states |n〉λ in the form of normalized f -coherent bound states

|m〉λ ≡ ‖η,m〉 =
(

λ2mm!

L
(0)
m (−λ2)

)1/2 m∑
n=0

(λ−1)n√
n!(m − n)!

|n〉 = |λ−1, f 〉B. (23)

So the space spanned by |n〉λ can be regarded as a nonlinear (or f -deformed) Fock space,
with the nonlinearity function f (n̂) = (m − n̂). It must be noted that the states |n〉λ are not
eigenstates of the annihilation operator a, because of the finiteness of the upper bound of the
summation.



Representations of coherent and squeezed states in a f -deformed Fock space 5653

3. Construction of coherent states in |n〉λ basis

For constructing the coherent states we begin with the definition of CSs as eigenstates of the
annihilation operator [Manko(1996), Das(2002)]

a|α, λ〉 = α|α, λ〉 α ∈ C (24)

where we call |α, λ〉, λ-CSs. Now if we expand |α, λ〉 in terms of the |n〉λ basis

|α, λ〉 =
∞∑

n=0

Cn|n〉λ (25)

then by equations (11) and (24) we obtain

∞∑
n=0

Cn

√
n

(
L

(0)
n−1(−λ2)

L
(0)
n (−λ2)

)1/2

|n − 1〉λ = α

∞∑
n=0

Cn|n〉λ (26)

from which we find that the coefficients Cn satisfy the following recurrence relation:

Cn = αn
(
L(0)

n (−λ2)
)1/2

√
n!

C0. (27)

The normalization condition of the state |α, λ〉, i.e. 〈α, λ|α, λ〉 = 1 leads to a complicated
series for coefficient C0 for which after some straightforward but lengthy calculation one
obtains

C0 = exp

[
−λ Re(α) − |α|2

2

]
(28)

where Re(α) is the real part of α. Finally, the normalized λ-CS takes the form

|α, λ〉 = exp

[
−λ Re(α) − |α|2

2

] ∞∑
n=0

αn
(
L(0)

n (−λ2)
)1/2

√
n!

|n〉λ (29)

which is a ‘new representation’ of canonical CS in |n〉λ basis. Their inner product which
allows overcompleteness is

〈α, λ|β, λ〉 = Nα,β,λ

∞∑
m=0

∞∑
n=0

α∗mβn
∑

k

λ2k+m−n

k!(n − k)!(m − n + k)!
(30)

with

Nα,β,λ = exp

[
−λ Re(α) − λ Re(β) − |α|2

2
− |β|2

2

]
. (31)

Now we imply that by equation (15) the λ-CSs in equation (29) can be expressed in terms of
the lowest eigenstate of Hλ as

|α, λ〉 = exp

[
−λ Re(α) − |α|2

2

]
eαa

†
λ |0〉. (32)

Since a|0〉 = 0, by BCH lemma equation (32) can be rewritten as

|α, λ〉 = e−λ Re(α) exp
(
αa

†
λ − α∗a

)|0〉 (33)

and finally using equation (2) we have

|α, λ〉 = eiλ Im(α) exp(αa† − α∗a)|0〉 = eiλ Im(α)D(α)|0〉 ≡ Dλ(α)|0〉 (34)

where the imaginary part of α is denoted by Im(α). Since D(α)|0〉 = |α〉 which is the usual
CSs, we conclude that |α, λ〉 is identical to |α〉, up to a phase factor equal to eiλ Im(α), and
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therefore |α, λ〉 = |α〉 whenever α ∈ R; a result that may be expected from the eigenvalue
equation (24). So obviously there is no problem with the resolution of the identity∫

dµ(α)|α, λ〉〈α, λ| = I. (35)

We would like to emphasize that all we have done in this section is obtaining the explicit form
of the canonical CS in a deformed Fock space |n〉λ, which in this case is non-orthogonal, and
we called it the new representation of canonical CS (equation (29)). In fact |α, λ〉 and |α〉
belong to the same ray in the projective Hilbert space (we will explain more about this result
in the appendix). As another result we conclude that by some particular superpositions of
displaced excited coherent states |n〉λ (which exhibit squeezing [Fu(2000)]), we have obtained
canonical CSs.

4. Time evolution of λ-coherent states

We are able to consider the dynamical evolution of the λ-CSs, in the |n〉λ basis, which is
simply obtained, because the spectrum of Hλ is the same as HSHO

U(t)|α, λ〉 = exp

[
−λ Re(α) − |α2|

2

] ∞∑
n=0

αn

√
n!

(
L(0)

n (−λ2)
)1/2

e−iHλt |n〉λ

= exp

[
−λ Re(α) − |α2|

2

] ∞∑
n=0

αn

√
n!

(
L(0)

n (−λ2)
)1/2

e−i(n+ 1
2 )t |n〉λ

= e−it/2|α(t), λ〉 (36)

where we have used α(t) ≡ α e−it . This means that the time evolution of λ-CSs in this
non-orthogonal basis remains coherent for all times (temporal stability).

5. Statistical properties of |α, λ〉 in |n〉λ bases

For standard CS |α〉, the occupation number distribution is Poissonian

P(n) = |〈n|α〉|2 = e−|α|2 |α|2n

n!
(37)

whose mean and variance are equal to |α|2. Similarly in the case of our λ-CSs, we define

Pλ(m) = |λ〈m|α, λ〉|2 = m!

L
(0)
m (−λ2)

e−|α|2
m∑

n=0

m∑
p=0

λ2m−n−pα∗pαn

p!(m − p)!n!(m − n)!
(38)

as the probability of finding the states |α, λ〉 in the |n〉λ basis. It is easy to verify that
limλ→0 Pλ(m) = P(m). While the distribution in the |n〉SHO basis is Poissonian, this is not so
in the |n〉λ basis. As usual we have

λ〈m̂〉λ =
∑
m

mPλ(m) λ〈m̂2〉λ =
∑
m

m2Pλ(m). (39)

To check Poissonian, sub-Poissonian or super-Poissonian statistics, we can evaluate the Mandel
parameter defined as

Q(α, λ) = 〈m̂2〉 − 〈m̂〉2

〈m̂〉 − 1. (40)

We see from figure 1 that the states |α, λ〉 exhibit sub-Poissonian (nonclassical) or super-
Poissonian statistics in the |n〉λ basis depending on the values of α. While it is seen that for
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Figure 1. Mandel parameter for λ-CSs in the |n〉λ basis as a function of λ for different values of α.
α is taken to be real.

α = 1, 2 the state is sub-Poissonian, when α = −1,−2 it is super-Poissonian. As another
feature, our numerical results show that when α ∈ R and α < 0 for large values of λ, the
statistical behaviour of the state is nearly close to Poissonian.

6. Squeezed states in terms of |n〉λ-bases

According to the statement of Solomon and Katriel [Solomon(1990)], the conventional
squeezed states are obtained by the action of a linear combination of creation and annihilation
operators on an arbitrary state. Now by generalizing this procedure to a

†
λ = a† +λI and aλ = a

of the deformed oscillator algebra with a, a
†
λ as annihilation and creation operators we have

(
a − ξa

†
λ

)|ξ, λ〉 = 0 ξ ∈ C. (41)

This equation for λ = 0 leads to the squeezed vacuum states

|ξ 〉 = C0

∞∑
n=0

ξn

[
(2n − 1)!!

(2n)!!

] 1
2

|2n〉λ = C0S(ξ)|0〉 (42)

where the normalization coefficient may be determined as

C0 =
[ ∞∑

n=0

|ξ |2n(2n − 1)!!

(2n)!!

]− 1
2

(43)

and S(ξ) = exp
[

ξ(a†)2

2

]
is the squeezed operator. But in general from equation (41) and

by the same procedure followed above and in section 2, for λ �= 0 we will arrive at a ‘new
representation’ for squeezed states (λ-SSs) as

|ξ, λ〉 = C0

∞∑
n=0

ξn
(
L

(0)
2n (−λ2)

) 1
2

√
(2n − 1)!!

(2n)!!
|2n〉λ ξ ∈ D (44)
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where D = {ξ ∈ C| |ξ | < R} is a disc centred at the origin in the complex ξ plane with radius
R, which by a suitable transformation can be transformed to a unit disc. For the normalization
factor one may obtain

C0 =
[ ∞∑

n=0

∞∑
m=0

ξnξ ∗m(2n − 1)!!(2m − 1)!!
∑

k

λ2k+2m−2n

k!(2n − k)!(2m − 2n + k)!

]− 1
2

. (45)

These λ-SSs are normalizable provided that the coefficient C0 is nonzero and finite. It is very
hard, if not impossible, to obtain the analytic form of the radius of convergence for C0. This
is due to the presence of three sigmas and two distinct parameters λ and ξ in the series of
equation (45). But this has been checked on the disc D for a large value of λ and we obtained
a finite radius of convergence for C0. But our investigations on numerical results show that
as λ is increased, the radius of convergence is reduced and this will confine the freedom of
choosing λ.

We see that these states are also even but in the |n〉λ basis, although if we transform them
by equation (16) to the ordinary basis |n〉, no definite parity can be observed. To change this
representation of squeezed states, equation (44), to the old standard Fock states, we obtain

|ξ, λ〉 = C0 exp

[
ξ
(
a
†
λ

)2

2

]
|0〉 = C0 exp

[
ξλ2

2

]
S(ξ)D(ξλ)|0〉 (46)

where as defined before S(ξ) and D(ξλ) are squeezed and displacement operators, respectively.
The state |ξ, λ〉 in the standard Fock space is the one which is named as the squeezed coherent
state. From the above discussion we immediately conclude that translating |ξ, λ〉 in the |n〉λ
basis to a state in the standard Fock space |n〉 does not coincide with that referred to in
equation (42). This is due to the fact that in obtaining the SSs, both the annihilation and
deformed creation operators contribute (equation (41)). To check the nonclassical properties
of these states first we investigate the quadrature squeezing. The quadratures x and p are
related to a and a† according to

x̂ = a + a†
√

2
p̂ = a − a†

i
√

2
. (47)

As usual the variances of coordinates x and momentum p are as follows:

(�x)2 = 〈x2〉 − 〈x〉2 = 1
2 [1 + 〈a2〉 + 〈a†2〉 + 2〈a†a〉 − 〈a〉2 − 〈a†〉2 − 2〈a〉〈a†〉] (48)

(�p)2 = 〈p2〉 − 〈p〉2 = 1
2 [1 − 〈a2〉 − 〈a†2〉 + 2〈a†a〉 + 〈a〉2 + 〈a†〉2 − 2〈a〉〈a†〉] (49)

where all of the expectation values should be calculated with respect to the states |ξ, λ〉. All
we need to evaluate the rhs of equations (48) and (49) are the terms such as

λ〈m|(a†
λ

)k|n〉λ = (n + k)!

(
m!

n!L(0)
n (−λ2)L

(0)
m (−λ2)

) 1
2 ∑

l

λ(2l+m−n−k)

l!(n + k − l)!(m − n − k + l)!

(50)

λ〈m|ak|n〉λ =
(

m!n!

L
(0)
n (−λ2)L

(0)
m (−λ2)

) 1
2 ∑

l

λ(2l+m−n+k)

l!(n − k − l)!(m − n − k + l)!
(51)

and

λ〈m|(a†
λ

)r
ak|n〉λ = (n − k + r)!

(n − k)!

(
m!

L
(0)
m (−λ2)L

(0)
n (−λ2)

) 1
2

×
∑

l

λ2l+m−n+k−r

l!(n − k + r − l)!(m − n + k − r + l)!
. (52)
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Figure 3. (a) Mandel parameter of λ-SSs as a function of |ξ | for different values of λ in the |n〉λ
basis. (b) Mandel parameter of λ-SSs as a function of |ξ | for different values of λ in the |n〉 basis.

Figure 2 shows that squeezing occurs in both p- and x-quadratures depending on the values
of ξ and λ. For λ � 1 only the p-quadrature is squeezed over all ranges of |ξ | (except near
ξ = 1) and the strength of squeezing is not very sensible to the value of λ but depends on
the values of |ξ |. By increasing the λ-parameter, the squeezing transfers from the p- to the
x-quadrature very fast with respect to the horizontal axis (|ξ |). Figures 3(a) and (b) show the
Mandel parameter, equation (40), as a function of |ξ | for different values of λ in two bases
|n〉 and |n〉λ. According to these results, while the λ-SSs, equation (44), have sub-Poissonian
(nonclassical) behaviour in the |n〉λ basis (figure 3(a)), they have super-Poissonian statistics
in the |n〉SHO basis (figure 3(b)).

7. Conclusion

The states proposed by Beckers et al [Beckers(1998)] (or by Fu et al [Fu(2000)]) |n〉λ
are not coherent ones, but they exhibit squeezing. We showed that these states can be
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regarded as f -deformed coherent bound states and demonstrated that our infinite-dimensional
Hilbert space may be spanned by them. Our motivation for this consideration is the greater
generality and flexibility of the non-orthogonal basis {|n〉λ, n ∈ N}∞n=0 than the orthogonal one
{|n〉, n ∈ N}∞n=0. Then we concluded that by some special superposition of the deformed Fock
space (|n〉λ), we can obtain the representations of coherent states |α, λ〉 as well as squeezed
coherent states |ξ, λ〉 in the new bases. In comparison with our new nonlinear–nonorthogonal
but normalized Fock space with basis |n〉λ and the orthonormal basis |n〉 of the old Fock space,
it is worth noting that the one we consider is not just a change of basis. By this we mean that
there is a cut-off in the sum on the rhs of relation (16). In other words the sum does not go
on to infinity. So it is not surprising that in the new Fock space we gain a set of new physical
aspects. It will be interesting to study other general systems and see if their Fock spaces can
be constructed by other superpositions of number states and then derive new coherent and
squeezed states.
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Appendix. How different deformations affect coherent states

Here we bring some examples to show that how the deformation of creation, annihilation or
both for a specific dynamical system affects the produced CSs. We construct the Hamiltonian

H ′ = H 2
SHO = (

a†a + 1
2

)2

= a†(a†a + 2)a + 1
4

= a†(n̂ + 2)a + 1
4 .

(A1)

Before discussing the coherent states of this nonlinear Hamiltonian, let us give some physical
aspects for it. First it is obvious that H ′|n〉 = (

n + 1
2

)2|n〉 which means that the states are
not equally spaced. We know that a number of quantum mechanical systems, e.g. square-
well [Styer(2001)], Morse potential [Morse(1926)] and Pöschl–Teller potential [Posh(1933)],
exhibit quadratic spectra En ∼ n2, which indicate the nonlinear nature of them. Secondly
we bring briefly the physical meaning of the above Hamiltonian as Man’ko et al proposed
[Manko(1997)]. For this purpose we may apply the inverse procedure they proposed, i.e.
replacing creation and annihilation operators by complex variables α and α∗, after all we have

H ′(α, α∗) = (2 + αα∗)αα∗ (A2)

where α = (x + iy)/
√

2 and α∗ = (x − iy)/
√

2, {x, y} = 1 and by {· , ·} we mean the
Poissonian bracket. Therefore we obtain

α̇ + i(2 + 4αα∗)α = 0. (A3)

Since αα∗ is a constant of motion we conclude that the frequency of this nonlinear Hamiltonian
dynamics is

ω = 2(1 + 2αα∗). (A4)

This shows the dependence of the new frequency on the number of particles, which is a
nonlinear phenomena called by Man’ko and Tino ‘the blue shift of the frequency of light’
[Manko(1995)].
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Now we try to construct CSs with three different deformations imposed on this
Hamiltonian as follows:

(I) A = f1(n̂)a,A† = a† where f1(n̂) = n̂ + 2. By the known procedure we have

|α, f1〉 = C0

∞∑
n=0

αn

(n!)
3
2

|n〉 C0 =
[ ∞∑

n=0

|α|2n

(n!)3

]− 1
2

. (A5)

(II) B = af2(n̂), B† = a†f2(n̂)a where f2(n̂) = √
n̂ + 2. In this case we obtain

|α, f2〉 = C0

∞∑
n=0

αn

n!
|n〉 C0 =

[ ∞∑
n=0

|α|2n

(n!)2

]− 1
2

. (A6)

(III) C = a, C† = a†f3(n̂), f3(n̂) = n̂ + 2 where it is really expected that by C operator we
demand the usual canonical coherent states. Therefore, in conclusion it is not surprising
that when we translate the λ-CSs, equation (29), in the standard Fock space we obtain the
canonical CS, clearly because we did not change the form of the annihilation operator.
As a result we observe that different deformations lead to different CSs. The first two
of these CSs (and obviously the third) are special kinds of generalized CSs proposed by
Penson and Solomon [Penson(2001)] in the form

|Z〉
C

= N
C
(|Z|2)−1/2

∞∑
n=0

Zn

√
C(n)

|n〉 Z ∈ C (A7)

where the normalization factor is

N
C
(|Z|2) =

∞∑
n=0

|Z|2n

C(n)
. (A8)
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